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Abstract

Intermittency arises typically in random fields of multiplicative type like the solution of stochastic heat 
equation. This paper investigates whether the stochastic heat equation with multiplicative noise under a 
discretization could inherit the dynamical behavior in particular the weak intermittency of the original 
equation. The exact solution of the stochastic heat equation with multiplicative noise is proved to admit 
weak intermittency with a specific index of Lyapunov exponents. We prove the existence of the weak 
intermittency for stochastic heat equation under a class of discretizations, and further the preservation of 
the index of Lyapunov exponents of the exact solution by a renewal approach, provided in addition that the 
initial datum is a positive constant and the spatial partition number is large.
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1. Introduction

Intermittency, as the branch of the chaos theory, which is one of the most famous mathematical 
discoveries of the 20th century, originates from the physics literature on turbulence and refers to 
the chaotic behavior of a random field that develops unusually high peaks over small areas (see 
[1–3]). For a random field of multiplicative type, intermittency is a universal phenomenon (see 
[4]) and can be characterized by Lyapunov exponents. Does a discretization actually reflect the 
dynamical behavior in particular the weak intermittency of the original equation? To investigate 
this problem, in this paper, we focus on the stochastic heat equation (SHE) with multiplicative 
noise under discretizations.

Consider the following SHE with periodic boundary condition:

⎧⎪⎪⎨
⎪⎪⎩

∂tu(t, x) = ∂2
xu(t, x) + λσ(u(t, x))Ẇ (t, x), (1.1a)

u(t,0) = u(t,1), t ≥ 0, (1.1b)

u(0, x) = u0(x), 0 ≤ x ≤ 1. (1.1c)

(1)

Here, Ẇ (t, x), t ≥ 0, x ∈ [0, 1] denotes the space-time white noise with respect to some given 
filtered probability space 

(
�, F , {Ft }t≥0 , P

)
, λ > 0 denotes the level of the noise, σ :R → R is a 

globally Lipschitz function, and u0 is a bounded, positive, non-random and measurable function. 
Eq. (1.1a) characterizing the evolution of a field in a random media, arises in several settings, 
for example generalized Edwards–Wilkinson models for the roughening of surfaces, continuum 
limits of particle processes and continuous space parabolic Anderson models (PAMs) (see [5]
and references therein).

Recall that the pth moment Lyapunov exponent of the random field u at x is defined 
as γ̄p(x) := lim supt→∞ t−1 log |u(t, x)|p , ∀ p > 0. The random field u is called intermittent 
(also called fully intermittent) if for all x, the mapping p 	→ γ̄p(x)/p is strictly increasing on 
p ∈ [1, ∞); see e.g. [4] and [6]. This mathematical definition implies that the appearance of high 
peaks gives the main contribution to the statistical moments of the solution, which leads to the 
non-trivial exponential behaviors of the moments of the solution. The existing research on the in-
termittency usually begins with a Feynman–Kac type formula to calculate the explicit expression 
of the pth moment Lyapunov exponent of the solution. For example, in the case of σ(u) = u, 
which refers to the famous PAM, it is shown in [6,7] that the solution of PAM is intermittent 
both in the continuous case and in the spatially discrete case. In the nonlinear case, it is difficult 
to obtain the explicit expression of the pth moment Lyapunov exponent, so there comes a no-
tion called weak intermittency, which means that for all x, γ̄2(x) > 0 and γ̄p(x) < ∞ (∀ p ≥ 2); 
see e.g. [8]. It is shown in [8] that the weak intermittency implies intermittency whenever the 
comparison principle holds.

For Eq. (1.1a) in the whole space, the weak intermittency of the solution has been studied (see 
e.g. [9,8,10,11]). For the continuous Eq. (1.1a) with various boundary conditions in a bounded 
domain, the weak intermittency, in particular the effect of the noise level λ on the Lyapunov 
exponent of the solution has been extensively studied (see [12–15]). More precisely, for the 
case with Dirichlet boundary condition, it is proved in [12,15] that the 2nd moment Lyapunov 
exponent of the solution is positive if the noise level λ is large enough, and negative if λ is small. 
While for the case with Neumann boundary condition, it is shown in [12] that the 2nd moment 
Lyapunov exponent of the solution is positive no matter what λ is. A finer result is proved in 
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[13], which suggests that the upper and lower bounds of the 2nd moment Lyapunov exponent of 
the solution are both Cλ4, i.e., the index of the 2nd moment Lyapunov exponent is 4. As for the 
case with periodic boundary condition, based on the analysis of the Green function of (1), it is 
proved in Section 2 that (1) is weakly intermittent and the index of Lyapunov exponents is 4.

In general, the solutions of stochastic partial differential equations can not be solved exactly, 
thus numerical discretizations provide a qualitative and quantitative approach to investigate the 
properties of the exact solution, which have been developed in the past three decades (see e.g. 
[16–21]).

In order to investigate the weak intermittency for (1) under discretizations, we apply the 
finite difference method to (1) to obtain a spatial semi-discretization. By finding the explicit 
expression of the semi-discrete Green function, the solution of the continuous version of the 
semi-discretization can be written into a compact form, which plays a key role in the analysis of 
the weak intermittency. With the detailed analysis on the integral properties of the semi-discrete 
Green function, the a priori estimation of the spatial semi-discretization gives an intermittent up-
per bound (Cp3λ4) for the pth moment Lyapunov exponent. Notice that the point-wise property 
of the semi-discrete Green function is slightly different from the continuous one, as the former is 
proved to be positive when time is large while the latter is positive for all t > 0. This positivity 
of the semi-discrete Green function, combining with a modified reverse Grönwall’s inequality 
reveals an intermittent lower bound (Cλ2) of the 2nd moment Lyapunov exponent under natural 
conditions. These imply that (1) under this semi-discretization is weakly intermittent. To improve 
the lower bound of the 2nd moment Lyapunov exponent of the semi-discretization, a renewal ap-
proach depending on the finer integral lower estimate of the semi-discrete Green function on 
the spatial grid points is applied. We prove that the index of pth moment Lyapunov exponents 
(p ≥ 2) of the semi-discretization on the spatial grid points is 4 provided additionally that the 
initial datum is a positive constant and the partition number is large.

Full discretizations are introduced by further applying a class of temporal discretization to the 
spatially semi-discrete system. The compact integral form is formulated by presenting the explicit 
expressions of the fully discrete Green functions. The prerequisite for the proof of the weak 
intermittency is the technical estimates of the fully discrete Green functions. We prove that (1)
under the full discretization is weakly intermittent with an intermittent upper bound (Cp3λ4) for 
the pth moment Lyapunov exponent and an intermittent lower bound ([log(1 +Cλ2τ)]/τ with τ
being the time step size) for the 2nd moment Lyapunov exponent. To fill the gap of the index of 
λ, a discrete version of renewal approach is implemented, which essentially depends on the finer 
estimate of the fully discrete Green function. Under some coupling condition between the space 
and time step sizes, we prove that the index of Lyapunov exponents of the full discretization is 4
when the initial datum is a positive constant.

This paper is organized as follows. In Section 2, the weak intermittency of the mild solution 
of (1) is established. In Section 3, for the spatial semi-discretization, we prove the weak inter-
mittency and the preservation of index of Lyapunov exponents of (1). Section 4 is devoted to the 
analysis of (1) under the full discretization on the preservation of the weak intermittency and the 
index of Lyapunov exponents of the exact solution. In Section 5, we give our conclusions and 
propose several open problems for future study. At last, some proofs are given in the appendix.

2. Weak intermittency of exact solution

The goal of this section is to investigate the weak intermittency of the mild solution of (1). 
Before that, we first present the definitions of Lyapunov exponent and intermittency, which can 
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be found in [22]. Throughout this paper, we let i2 = −1, and the constant C may be different 
from line to line.

Definition 2.1. Fix some x ∈ [0, 1], define the pth moment Lyapunov exponent of u at x as

γ̄p(x) := lim sup
t→∞

1

t
logE

(|u(t, x)|p) , (2)

for all p ∈ (0, ∞).

Definition 2.2. (i) We say that u is fully intermittent if for all x ∈ [0, 1], the mapping p → γ̄p(x)

p

is strictly increasing for p ∈ [1, ∞).
(ii) We say that u is weakly intermittent if for all x ∈ [0, 1], γ̄2(x) > 0 and γ̄p(x) < ∞ for each 
p > 2.
(iii) We say that the index of Lyapunov exponents of u is � if for each p ≥ 2, C1λ

� ≤
infx∈[0,1] γ̄p(x) ≤ supx∈[0,1] γ̄p(x) ≤ C2λ

� with positive constants C1 < C2.

Remark 2.1. (i) The full intermittency can be implied by the weak intermittency on certain 
circumstances, for example, σ(0) = 0 and u0(x) ≥ 0. For its proof, we refer to [6, Theorem 
3.1.2].
(ii) All the results in this paper are still valid if we choose the lower pth moment Lyapunov 
exponent, whose definition is γ

p
(x) := lim inft→∞ 1

t
logE(|u(t, x)|p).

Let’s intuitively see the information that the weak intermittency with the index of Lyapunov 
exponents being � can bring to us. Take the 2nd moment Lyapunov exponent as an example. 
Suppose γ̄2(x) = γ

2
(x) =: γ2(x). Take constants α1, α2 satisfying

0 < α1λ
� < C1λ

� ≤ γ2(x)

2
≤ C2λ

� < α2λ
�.

Set B1(t) :=
{
ω ∈ � : |u(t, x)(ω)| > eα2λ

�t
}

and B2(t) :=
{
ω ∈ � : |u(t, x)(ω)| < eα1λ

�t
}
.

By Chebyshev’s inequality,

P (B1(t)) ≤ e−2α2λ
�tE(|u(t, x)|2) ≈ e−(2α2λ

�−γ2(x))t ≤ e−Ct

with some C > 0, where f (t) ≈ g(t) means limt→∞(logf (t) − logg(t))/t = 0. This implies 
that the random field u may take very large values with exponentially small probabilities, and 
therefore it develops high peaks when t is large.

Moreover,

E
(
|u(t, x)|2;B2(t)

)
:=
∫

B2(t)

|u(t, x)|2dP ≤ e2α1λ
�t � eγ2(x)t ≈ E(|u(t, x)|2),

where f (t) � g(t) denotes limt→∞ f (t)/g(t) = 0. This means the contribution to the second 
moment of u at x comes from (B2(t))

c where may appear the high peak for large t .
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When the random field u is fully intermittent, the main contribution to each moment of u is 
carried by higher and higher, more and more widely spaced peaks. For more details, we refer to 
[2,14].

The mild solution of (1) can be written as

u(t, x) =
1∫

0

G(t, x, y)u0(y) dy + λ

t∫
0

1∫
0

G(t − s, x, y)σ (u(s, y)) dW(s, y), (3)

where the Green function G(t, x, y) is defined as (see [23])

G(t, x, y) = 1√
4πt

+∞∑
m=−∞

e− (x−y−m)2

4t , t > 0, x, y ∈ [0,1], (4)

and its spectral decomposition is

G(t, x, y) =
+∞∑

j=−∞
e−4π2j2t e2π ij (x−y), t > 0, x, y ∈ [0,1]. (5)

In order to investigate the weak intermittency of the exact solution of (1), we make the fol-
lowing assumption on the initial datum and diffusion coefficient.

Assumption 2.1. Let I0 := infx∈[0,1] u0(x), Lσ := supx =y,x,y∈R
∣∣∣σ(x)−σ(y)

x−y

∣∣∣, and J0 :=
infx∈R\{0}

∣∣∣σ(x)
x

∣∣∣. We assume that I0 > 0, Lσ > 0 and J0 > 0.

We remark that all the results of this paper still hold when considering the initial datum u0 to 
be negative with the condition I0 := supx∈[0,1] u0(x) < 0.

Theorem 2.1. Let Assumption 2.1 hold, and assume that real numbers p ≥ 2 and λ > 0 satisfy 
pλ2 ≥ 1

C0L
2
σ

with some C0 > 0. Then the solution of (1) is weakly intermittent with the index of 
Lyapunov exponents being 4.

Before giving the proof of Theorem 2.1, we show some properties of the Green function to 
(1).

Lemma 2.1. G(t, x, y) has the following properties:

(i) G(t, x, y) > 0 for t > 0, x, y ∈ [0, 1], and 
∫ 1

0 G(t, x, y) dy = 1 for t > 0, x ∈ [0, 1].
(ii) 
∫ 1

0 G2(t, x, y) dy = G(2t, x, x) ≥ 1√
8πt

for t > 0, x ∈ [0, 1].
(iii) 

∫ 1
0 G2(t, x, y) dy ≤ C

(
1√
t
+ 1
)

with a positive constant C for all t > 0, x ∈ [0, 1].

Proof. It is obvious that (i) holds. We prove (ii) by the use of the spectral decomposition (5) of 
the Green function.
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1∫
0

G2(t, x, y) dy =
1∫

0

+∞∑
r,j=−∞

e−4π2(r2+j2)t e2π i(r+j)(x−y) dy =
∑

{
r,j∈Z; r+j=0

} e
−4π2(r2+j2)t

=
+∞∑

r=−∞
e−8π2r2t = G(2t, x, x).

By (4), we have G(2t, x, x) = 1√
8πt

∑+∞
m=−∞ e− m2

8t ≥ 1√
8πt

. As for (iii), combining (ii) and 
[14, Lemma B.1], we can get the desired result. The proof is finished. �
Proof of Theorem 2.1. The following intermittent upper bound is a direct consequence of [14, 
Proposition 4.1]: supx∈[0,1] γ̄p(x) ≤ CL4

σ λ4p3, with some constant C > 0 for all p ∈ [2, ∞).
Following the approach presented by Khoshnevisan et al. in [13, Section 2.2], which heav-

ily relies on the properties of the Green function, i.e., Lemma 2.1 (i) (ii), we can get that 

infx∈[0,1] γ̄2(x) ≥ λ4J 4
0

8 > 0 under Assumption 2.1. This, combining with the definition of Lya-
punov exponent leads to that for any fixed x ∈ [0, 1] and for any ε > 0, there exists a sequence 
{tk}k≥0 and some K0 ∈N such that for k ≥ K0,

1

tk
logE(|u(tk, x)|2) ≥ λ4J 4

0

8
− ε.

Hölder’s inequality gives that for p > 2, E(|u(tk, x)|2) ≤ (E|u(tk, x)|p)
2
p . Hence, we have

E(|u(tk, x)|p) ≥ (E|u(tk, x)|2) p
2 ≥ exp

{p

2

(λ4J 4
0

8
− ε
)
tk

}
,

which implies that

1

tk
logE(|u(tk, x)|p) ≥ p

2

(λ4J 4
0

8
− ε
)
.

By the arbitrariness of ε > 0, we finally get the intermittent lower bound: infx∈[0,1] γ̄p(x) ≥
pλ4J 4

0
16 , p ≥ 2. Hence, the proof is finished. �

Remark 2.2. From the proof of Theorem 2.1, we observe that to get the intermittent lower bound, 
it suffices to estimate the lower bound for the 2nd moment Lyapunov exponent.

3. Weak intermittency under spatial semi-discretization

In this section, we apply the finite difference method to (1) to get a spatial semi-discretization, 
whose solution can be written into a compact integral form by the use of the explicit expression of 
the semi-discrete Green function. Based on the detailed analysis on the semi-discrete Green func-
tion and the reverse Grönwall’s inequality, we prove that (1) under the spatial semi-discretization 
is weakly intermittent. Moreover, (1) under this semi-discretization preserves the index of Lya-
punov exponents of the exact solution.
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3.1. Spatial semi-discretization

We introduce the uniform partition on the spatial domain [0, 1] with step size 1
n

for a fixed 
integer n ≥ 3. Let un(t, k

n
) be the approximation of u(t, k

n
), k = 0, 1, . . . , n − 1. The spatial 

semi-discretization based on the finite difference method is given by:

⎧⎪⎪⎨
⎪⎪⎩

dun
(
t, k

n

)= n2
(
un
(
t, k+1

n

)− 2un
(
t, k

n

)+ un
(
t, k−1

n

))
dt + λ

√
nσ
(
un
(
t, k

n

))
dWn

k (t),

un(t,0) = un(t,1), un
(
t,− 1

n

)= un
(
t, n−1

n

)
, t ≥ 0,

un
(
0, k

n

)= u0
(

k
n

)
, k = 0,1, . . . , n − 1,

(6)
where Wn

k (t) := √
n
(
W
(
t, k+1

n

)−W
(
t, k

n

))
. By the linear interpolation with respect to the space 

variable, it follows from Appendix A that the mild form of un is given by:

un(t, x) =
1∫

0

Gn(t, x, y)un(0, (κn(y)) dy + λ

t∫
0

1∫
0

Gn(t − s, x, y)σ
(
un(s, κn(y))

)
dW(s, y),

(7)

almost surely for all t ≥ 0 and x ∈ [0, 1], where Gn(t, x, y) :=∑n−1
j=0 e

λn
j t

en
j (x)ēj (κn(y)) with 

λn
j := −4n2 sin2

(
jπ
n

)
, κn(y) := [ny]

n
, [·] being the greatest integer function, ej (x) = e2π ijx , ēj (·)

representing the complex conjugate of ej (·), and

en
j (x) := ej (κn(x)) + (nx − nκn(x))

[
ej

(
κn(x) + 1

n

)
− ej (κn(x))

]
, ∀x ∈ [0,1].

Nevertheless, based on the periodicity of λn
j and ej with respect to j , Gn(t, x, y) can be 

rewritten into two cases:

Gn(t, x, y) =
⎧⎨
⎩
∑[

n
2

]
j=−[ n

2

] eλn
j t

en
j (x)ēj (κn(y)), n is odd,∑ n

2
j=− n

2 +1 e
λn

j t
en
j (x)ēj (κn(y)), n is even.

By expanding the real and imaginary parts of Gn, it is not difficult to observe that Gn is a real 
function (see Appendix A). Now we give the main result of this subsection.

Theorem 3.1. Let Assumption 2.1 hold, and assume that real numbers p ≥ 2 and λ > 0 satisfy 
pλ2 ≥ 1

C0L
2
σ

with some C0 > 0. Then (1) under the spatial semi-discretization is weakly intermit-
tent.

The proof of Theorem 3.1 follows from Sections 3.2 and 3.3. Before that, we prove the fol-
lowing properties of the semi-discrete Green function Gn, which is essential in establishing the 
weak intermittency of (6).
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Lemma 3.1. Gn(t, x, y) has the following properties:

(i) 
∫ 1

0 Gn(t, x, y) dy = 1 for t > 0, x ∈ [0, 1].
(ii) For t > 0, x ∈ [0, 1], the following equalities hold:

1∫
0

(
Gn(t, x, y)

)2
dy =

n−1∑
j=0

e
2λn

j t
∣∣∣en

j (x)

∣∣∣2 =

⎧⎪⎨
⎪⎩
∑[

n
2

]
j=−[ n

2

] e2λn
j t
∣∣∣en

j (x)

∣∣∣2 , n is odd,

∑ n
2
j=− n

2 +1 e
2λn

j t
∣∣∣en

j (x)

∣∣∣2 , n is even.

Moreover, 
∫ 1

0 (Gn(t, x, y))2 dy ≥ 1 for t > 0, x ∈ [0, 1].
(iii) 

∫ 1
0 (Gn(t, x, y))2 dy ≤ 1 +

√
π
8t

for all t > 0, x ∈ [0, 1].
(iv) For all n ≥ 3 and x, y ∈ [0, 1], we have Gn(t, x, y) ≥ 1

2 for t ≥ π
4 .

Proof. (i) For all t ≥ 0, x ∈ [0, 1], we get

1∫
0

Gn(t, x, y) dy =
n−1∑
k=0

1

n

n−1∑
j=0

e
λn

j t
en
j (x)e−2π ij k

n = 1 +
n−1∑
j=1

1

n
e
λn

j t
en
j (x)

n−1∑
k=0

cos

(
2πj

k

n

)
= 1,

where we have used the fact that 
∑n−1

k=0 cos
(
2πj k

n

)= 0 for j /∈ nZ.
(ii) For all t ≥ 0, x ∈ [0, 1], taking advantage of the orthogonality of 

{
ej

}
j=0,1,...,n−1, we get

1∫
0

(
Gn(t, x, y)

)2
dy =

n−1∑
k=0

1

n

n−1∑
j=0

e
2λn

j t
∣∣∣en

j (x)

∣∣∣2
∣∣∣∣ēj

(
k

n

)∣∣∣∣
2

+ 1

n

∑
j =l

e
(λn

j +λn
l )t

en
j (x)ēn

l (x)

n−1∑
k=0

ēj

(
k

n

)
el

(
k

n

)
=

n−1∑
j=0

e
2λn

j t
∣∣∣en

j (x)

∣∣∣2 .

Similarly, we can get the result in the cases of n being odd and even.
(iii) We only prove the case of n being odd since the proof is similar when n is even. By (ii), 

we have

1∫
0

(
Gn(t, x, y)

)2
dy ≤ 1 + 4

[
n
2

]∑
j=1

e
2λn

j t = 1 + 4

[
n
2

]∑
j=1

e
−8j2π2cn

j t ≤ 1 + 4

[
n
2

]∑
j=1

e−32j2t

≤ 1 + 4

[
n
2

]∫
0

e−32z2t dz ≤ 1 + 4

∞∫
0

e−32z2t dz ≤ 1 +
√

π

8t
,

where we have used the fact that cn
j := sin2(

jπ
n

)/(
jπ
n

)2 ∈
[

4
π2 ,1

]
for j = 1, 2, . . . , 

[
n
2

]
.

(iv) We only prove the case of n being odd since the proof is similar when n is even. Note 
that
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Gn
(
t,

q

n
,

l

n

)
= 1 + 2

[ n
2 ]∑

j=1

e
λn

j t cos
(
2πj

q − l

n

)
, q, l = 0,1, . . . , n − 1.

Using again the fact that cn
j := sin2(

jπ
n

)/(
jπ
n

)2 ∈
[

4
π2 ,1

]
for j = 1, 2, . . . , 

[
n
2

]
gives

∣∣∣ [ n
2 ]∑

j=1

e
λn

j t cos
(
2πj

q − l

n

)∣∣∣≤ [ n
2 ]∑

j=1

e
λn

j t ≤
[ n

2 ]∑
j=1

e−16j2t ≤
∞∫

0

e−16z2t dz ≤ 1

8

√
π

t
,

which implies that supn≥3 2
∣∣∣∑[ n

2 ]
j=1 e

λn
j t cos

(
2πj

q−l
n

)∣∣∣ ≤ 1
4

√
π
t

≤ 1
2 when t ≥ π

4 . Therefore, 

when t ≥ π
4 , we derive that

inf
n≥3

inf
q,l∈{0,1,...,n−1}G

n
(
t,

q

n
,

l

n

)

= inf
n≥3

inf
q,l∈{0,1,...,n−1}

(
1 + 2

[ n
2 ]∑

j=1

e
λn

j t cos
(
2πj

q − l

n

))≥ 1 − 1

2
≥ 1

2
.

This will lead to our desired result after linear interpolation with respect to the space variable.
Hence the proof is completed. �
3.2. Intermittent upper bound

To give the a priori estimation of the mild solution to (7), we introduce norms on the space of 
random fields,

Nβ,p(u) := sup
t≥0

sup
x∈[0,1]

{
e−βt ‖u(t, x)‖p

}
, ∀β > 0, p ≥ 2,

where ‖ · ‖p denotes the Lp(�)-norm. Let Lβ,p be the completion of simple random fields in 
Nβ,p-norm. For more details, we refer to [22, Chapter 4].

Proposition 3.1. For real numbers p ≥ 2 and λ > 0 that satisfy pλ2 ≥ 1
C0L

2
σ

with some C0 > 0, 

there exists a random field un ∈⋃β>0 Lβ,p solving (7) for each n ≥ 3. Moreover, un is a.s.-
unique among all random fields satisfying

sup
x∈[0,1]

E
(∣∣un(t, x)

∣∣p)≤ C
p

1 exp
{
C2L

4
σ λ4p3t

}
, for p ≥ 2, t ≥ 0,

with some constants C1 := C1
(

supx∈[0,1] u0(x)
)
> 0 and C2 > 0.
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Proof. We apply Picard’s iteration by defining

un
(0)(t, x) := u(0, x),

un
(q+1)(t, x) :=

1∫
0

Gn(t, x, y)un(0, κn(y)) dy

+ λ

t∫
0

1∫
0

Gn(t − s, x, y)σ
(
un

(q)(s, κn(y))
)

dW(s, y).

Note that

sup
x∈[0,1]

∣∣∣
1∫

0

Gn(t, x, y)u(0, κn(y)) dy

∣∣∣≤ max
0≤k≤n−1

∣∣∣[en2DtUn(0)]k
∣∣∣

= e−2n2t max
0≤k≤n−1

∣∣∣[e2n2V tUn(0)]k
∣∣∣,

where V := 1
2D + I , D is defined as in Appendix A and I is the unit matrix, [v]k denotes 

the kth coordinate of the vector v, and Un(0) is considered as a vector with coordinates 
[Un(0)]k := un(0, k

n
) as in Appendix A. By the Taylor expansion and the fact that ‖V ‖∞ ≤ 1

with ‖(vij )‖∞ := max1≤i≤n

∑n
j=1 |vij | for a matrix (vij )i,j=1,...,n, we get

sup
x∈[0,1]

∣∣∣
1∫

0

Gn(t, x, y)u(0, κn(y)) dy

∣∣∣≤ e−2n2t
∞∑

j=0

(2n2t)j

j ! max
0≤k≤n−1

∣∣∣[V jUn(0)]k
∣∣∣

≤ e−2n2t
∞∑

j=0

(2n2t)j

j ! max
0≤k≤n−1

∣∣∣un
(
0,

k

n

)∣∣∣≤ sup
x∈[0,1]

|u0(x)|,

where in the last step we have used the fact that 
∑∞

j=0
(2n2t)j

j ! = e2n2t .
Using Lemma 3.1 (ii) (iii), combining the linear growth of σ , Minkowski inequality and 

Burkholder–Davis–Gundy inequality (see e.g. [11, Lemma 3.1]), we obtain

∥∥∥un
(q+1)(t, x)

∥∥∥2

p
≤ 2 sup

x∈[0,1]
|u0(x)|2

+ 8pλ2

t∫
0

1∫
0

(
Gn(t − s, x, y)

)2 ∥∥∥σ (un
(q)(s, κn(y))

)∥∥∥2

p
ds dy

≤ 2 sup |u0(x)|2

x∈[0,1]
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+ CL2
σ pλ2

(√
t + t

)
+ CL2

σ pλ2

t∫
0

(
1√
t − s

+ 1

)
sup

y∈[0,1]

∥∥∥un
(q)(s, y)

∥∥∥2

p
ds.

(8)

Multiplying e−2βt with 2β ≥ 1 on both sides of (8), and taking supremum over x ∈ [0, 1], t ≥ 0, 
we get

[
Nβ,p

(
un

(q+1)

)]2 ≤ 2 sup
x∈[0,1]

|u0(x)|2 + CL2
σ pλ2

√
4βe

+ CL2
σ pλ2

2βe

+ CL2
σ pλ2

(√
π

2β
+ 1

2β

)[
Nβ,p

(
un

(q)

)]2

≤ 2 sup
x∈[0,1]

|u0(x)|2 + 3CL2
σ pλ2

√
2β

+ 3CL2
σ pλ2

√
2β

[
Nβ,p

(
un

(q)

)]2
,

where in the last step we have used 
√

π
2β

+ 1
2β

≤ 3√
2β

for β ≥ 1
2 .

Due to the condition that pλ2 ≥ 1
C0L

2
σ

with some C0 > 0, there exists a β such that

3CL2
σ pλ2

√
2β

≤ 1

2
and β ≥ 1

2
. (9)

For example, one can choose β = 18(C + C0
6 )2L4

σ p2λ4. For such β , we have

[
Nβ,p

(
un

(q+1)

)]2 ≤ 2 sup
x∈[0,1]

|u0(x)|2 + 1

2
+ 1

2

[
Nβ,p

(
un

(q)

)]2

= : η + 1

2

[
Nβ,p

(
un

(q)

)]2
. (10)

By iteration, we derive that

[
Nβ,p

(
un

(q+1)

)]2 ≤ η + 1

2

(
η + 1

2

[
Nβ,p

(
un

(q−1)

)]2)≤ · · ·

≤ η
(
1 + 1

2
+ · · · + 1

2q

)+ 1

2q+1

[
Nβ,p

(
un

(0)

)]2 ≤ 2η +
[
Nβ,p

(
un

(0)

)]2

≤ 2η + sup
x∈[0,1]

|u0(x)|2 =: C1, (11)

which yields un
(q+1) ∈ Lβ,p .

Eq. (11) implies that for all t ≥ 0, x ∈ [0, 1] and β satisfying (9), we have E
(|un

(q+1)(t, x)|p)≤
C

p
2 exp {pβt} for each p ≥ 2, q ≥ 0.
1
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Similarly, using the technique as before, we can prove

[
Nβ,p

(
un

(q+1) − un
(q)

)]2 ≤ 3CL2
σ pλ2

√
2β

[
Nβ,p

(
un

(q) − un
(q−1)

)]2
.

By choosing β satisfying (9), we obtain that {un
(q)

(t, x)}q≥0 is a Cauchy sequence in Nβ,p-norm, 
i.e. {un

(q)(t, x)}q≥0 converges to some random field un in Nβ,p-norm for each fixed p ≥ 2. Since 

Lβ,p is complete, we deduce that un ∈ Lβ,p . Moreover, un satisfies the integral equation (7) in 
Nβ,p-norm.

The uniqueness of the solution of the semi-discretization in Nβ,p-norm can be shown in a 
similar way as above. Thus the proof is completed. �

Based on Proposition 3.1, we can give the upper bound of the pth moment Lyapunov exponent 
of (1) under the spatial semi-discretization.

Proposition 3.2. For real numbers p ≥ 2 and λ > 0 that satisfy pλ2 ≥ 1
C0L

2
σ

with some C0 > 0, 
there exists a positive constant C, such that for n ≥ 3,

sup
x∈[0,1]

γ̄ n
p (x) := sup

x∈[0,1]
lim sup
t→∞

1

t
logE

(∣∣un(t, x)
∣∣p)≤ CL4

σ λ4p3.

3.3. Intermittent lower bound

It remains to investigate the lower bound for the 2nd moment Lyapunov exponent. Before 
that, we give the following reverse Grönwall’s inequality.

Lemma 3.2. (Reverse Grönwall’s inequality) Let φ be non-negative and satisfy φ(t) ≥ α +
β
∫ t

0 φ(s) ds for t > a > 0, where α, β > 0 are constants. Then for t > a,

φ(t) ≥ eβ(t−a)
(
α + β

a∫
0

φ(s) ds
)
.

Proof. Note that φ satisfies φ(t) ≥ (α + β
∫ a

0 φ(s) ds
)+ β

∫ t

a
φ(s) ds for t > a. Then we have 

dψ(t) = βφ(t)dt with ψ(t) := β
∫ t

a
φ(s)ds which leads to φ(t) ≥ eβ(t−a)

(
α+β

∫ a

0 φ(s) ds
)
. �

Proposition 3.3. Under Assumption 2.1, we have infx∈[0,1] γ̄ n
2 (x) ≥ λ2J 2

0 > 0.

Proof. For each fixed n ≥ 3, taking the second moment on both sides of (7), combining Walsh 
isometry (see e.g. [22, Chapter 4]) and Lemma 3.1 (i) (ii) (iv), we get when t ≥ π

4 ,

E
(∣∣un(t, x)

∣∣2)

=
∣∣∣

1∫
Gn(t, x, y)un(0, κn(y)) dy

∣∣∣2 + λ2

t∫ 1∫ (
Gn(t − s, x, y)

)2
E
(∣∣σ(un(s, κn(y)))

∣∣2) dsdy
0 0 0
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≥ I 2
0

∣∣∣
1∫

0

Gn(t, x, y) dy

∣∣∣2 + λ2J 2
0

t∫
0

1∫
0

(
Gn(t − s, x, y)

)2
E
(∣∣un(s, κn(y))

∣∣2) dsdy

≥ I 2
0 + λ2J 2

0

t∫
0

1∫
0

(
Gn(t − s, x, y)

)2
dy inf

y∈[0,1]E
(∣∣un(s, y)

∣∣2) ds

≥ I 2
0 + λ2J 2

0

t∫
0

inf
y∈[0,1]E

(∣∣un(s, y)
∣∣2) ds.

Taking infimum over x ∈ [0, 1], we have

inf
x∈[0,1]E

(∣∣un(t, x)
∣∣2)≥ I 2

0 + λ2J 2
0

t∫
0

inf
y∈[0,1]E

(∣∣un(s, y)
∣∣2) ds.

Applying Lemma 3.2 with α = I 2
0 , β = λ2J 2

0 , a = π
4 , we obtain

inf
x∈[0,1]E

(∣∣un(t, x)
∣∣2)≥ I 2

0 eλ2J 2
0 (t− π

4 ), for t >
π

4
,

which leads to

inf
x∈[0,1] γ̄

n
2 (x) = inf

x∈[0,1] lim sup
t→∞

1

t
logE

(∣∣un(t, x)
∣∣2)≥ λ2J 2

0 > 0.

Hence we finish the proof. �
3.4. Index of Lyapunov exponents

It is shown in Section 2 that the index of Lyapunov exponents of the solution of (1) is 4 under 
Assumption 2.1. By applying a renewal approach, we can get the same kind of result for (1)
under the spatial semi-discretization for large n, provided additionally that the initial datum is a 
positive constant. Thus, we show that the index of Lyapunov exponents of the exact solution is 
preserved by the spatial semi-discretization.

Assumption 3.1. We assume that u0 :≡ I0 > 0. For any ζ > 0, let the spatial partition number n
satisfy n ≥ ζλ2.

Theorem 3.2. Under Assumptions 2.1 and 3.1, for each n, we have

inf
x∈[0,1]E

(∣∣un(t, κn(x))
∣∣2)≥ C1e

C2J
4
0 λ4t , t > T , (12)

where T := T (n) > 0, C1 = 8πζI 2
0

J 2
0 +8πζ

, C2 = 2ζ 2π2

(J 2
0 +8πζ)2 . Namely, the index of Lyapunov exponents 

of the spatial semi-discretization is 4.
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Before giving the proof of Theorem 3.2, we present the refined property of the semi-discrete 
Green function and a probability density function for the renewal approach.

Lemma 3.3. For t > 0, x ∈ [0, 1], we have

1∫
0

(
Gn(t, κn(x), y)

)2
dy ≥ 1 − e−2n2π2t

√
32πt

.

Proof. Since 
∣∣∣en

j (κn(x))

∣∣∣2 = 1, we obtain

1∫
0

(
Gn(t, κn(x), y)

)2
dy =

n−1∑
j=0

e
2λn

j t ≥
[

n
2

]∑
j=0

e−8j2π2t ≥
n
2∫

0

e−8z2π2t dz

=

√√√√√√
n
2∫

0

n
2∫

0

e−8(z2+w2)π2t dw dz =

√√√√√√1

4

n
2∫

− n
2

n
2∫

− n
2

e−8(z2+w2)π2t dw dz

≥

√√√√√√1

4

2π∫
0

n
2∫

0

e−8r2π2t r dr dθ = 1√
32π

√
1 − e−2n2π2t

t
≥ 1 − e−2n2π2t

√
32πt

,

where we have used the polar coordinate transformation in the last line. The proof is finished. �
Lemma 3.4. Let b := λ2J 2

0√
32π

and n ≥ ζλ2. Then g(t) = be−πμ2b2t × 1−e−2n2π2 t√
t

is a probability 

density function on [0, ∞) with some suitable μ ≥ 8πζ

J 2
0 +8πζ

> 0.

Proof. It suffices to find some μ > 0 such that 
∫ t

0 g(t) dt = ∫∞
0 be−πμ2b2t × 1−e−2n2π2 t√

t
dt = 1. 

A direct calculation gives that 
∫∞

0 be−πμ2b2t × 1−e−2n2π2 t√
t

dt = 1
μ

− b√
μ2b2+2n2π

. Hence, we only 

need to prove that the continuous function h(μ) := b√
μ2b2+2n2π

−
(

1
μ

− 1
)

has a zero point 

μ > 0. Since n ≥ ζλ2, we get h(μ) ≤
√

b2

μ2b2+2ζ 2λ4π
−
(

1
μ

− 1
)

≤
√

J 4
0

64ζ 2π2 −
(

1
μ

− 1
)

, which 

implies h(0+) < 0. It is obvious that h(1−) > 0 for each fixed n. Hence, there exists a μ ∈
(0, 1) such that h(μ) = 0, and g(t) is a probability density function with this μ. Moreover, 

μ = 1/
(√

b2

2n2π+μ2b2 + 1
)≥ 8πζ

J 2
0 +8πζ

. The proof is finished. �
Proof of Theorem 3.2. Taking the second moment on both sides of (7) with the space variable 
being κn(x), and combining Walsh isometry, Lemma 3.1 (i) (ii) and Lemma 3.3, we get
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E
(∣∣un(t, κn(x))

∣∣2)≥ I 2
0 + λ2J 2

0

t∫
0

1∫
0

(
Gn(t − s, κn(x), y)

)2
dy inf

y∈[0,1]E
(∣∣un(s, κn(y))

∣∣2) ds

≥ I 2
0 + λ2J 2

0√
32π

t∫
0

1 − e−2n2π2(t−s)

√
t − s

inf
y∈[0,1]E

(∣∣un(s, κn(y))
∣∣2) ds. (13)

Taking infimum over x ∈ [0, 1], then multiplying e−πμ2b2t on both sides of (13) with b := λ2J 2
0√

32π

and μ being a parameter that will be determined later, and denoting

Mn(t) := e−πμ2b2t inf
x∈[0,1]E

(∣∣un(t, κn(x))
∣∣2) ,

we obtain

Mn(t) ≥ e−πμ2b2t I 2
0 +

t∫
0

be−πμ2b2(t−s) × 1 − e−2n2π2(t−s)

√
t − s

Mn(s) ds.

Consider

e−πμ2b2t f (t) = e−πμ2b2t I 2
0 +

t∫
0

g(t − s)e−πμ2b2sf (s) ds, (14)

where g(t) is defined as in Lemma 3.4 and is a probability density function. Hence, renewal 
theorem (see [24, Theorem 8.5.14]) ensures

lim
t→∞ e−πμ2b2t f (t) =

∫∞
0 e−πμ2b2t I 2

0 dt∫∞
0 tg(t) dt

≥
∫∞

0 e−πμ2b2t I 2
0 dt∫∞

0 b
√

te−πμ2b2t dt
= 2μI 2

0 .

Therefore, there exists T := T (n) > 0, such that

f (t) ≥ μI 2
0 eπμ2b2t , ∀ t > T . (15)

Observing that Mn(t) is a super-solution to (14) and applying [22, Theorem 7.11], we have 
Mn(t) ≥ e−πμ2b2t f (t), ∀ t > 0, which together with (15) implies

inf
x∈[0,1]E

(∣∣un(t, κn(x))
∣∣2)≥ μI 2

0 eπμ2b2t , ∀ t > T .

Moreover, by Lemma 3.4, we have μ2b2 ≥ 2ζ 2πJ 4
0 λ4

(J 2
0 +8πζ)2 . This leads to (12). This, combining with 

Remark 2.2 and Proposition 3.1 indicates that the upper and lower bounds of Lyapunov exponents 
of (1) under the spatial semi-discretization are both Cλ4, i.e., the index of Lyapunov exponents 
of the spatial semi-discretization is 4. Hence we complete the proof of the theorem. �
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4. Weak intermittency under full discretization

In this section, we discretize (6) in the temporal direction by the θ -scheme to get the full 
discretization, whose solution can be written into a compact integral form by finding explicit 
expressions of the fully discrete Green functions. Based on the technical estimates of the fully 
discrete Green functions, (1) under the full discretization is proved to be weakly intermittent and 
to preserve the index of Lyapunov exponents of the exact solution.

4.1. Full discretization

We fix the uniform time step size 0 < τ < 1. In the sequel, we always assume n ≥ 3. By using 
the θ -scheme to discretize (6), we obtain the following full discretization:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un,τ (ti+1, xj ) = un,τ (ti , xj ) + (1 − θ)τ�nu
n,τ (ti , ·)(xj ) + θτ�nu

n,τ (ti+1, ·)(xj )

+λτσ
(
un,τ (ti , xj )

)
�n,τW(ti , xj ),

un,τ (ti ,0) = un,τ (ti ,1), un,τ
(
ti ,

1
n

)= un,τ
(
ti ,

n−1
n

)
, i = 0,1, . . . ,

un,τ (0, xj ) = u0(xj ), j = 0,1, . . . , n − 1,

(16)

where un,τ is an approximation of un, ti := iτ, xj := j
n

, and

�nu
n,τ (ti , ·)(xj ) := n2 (un,τ (ti , xj+1) − 2un,τ (ti , xj ) + un,τ (ti , xj−1)

)
,

�n,τW(ti , xj ) := nτ−1 (W(ti+1, xj+1) − W(ti, xj+1) − W(ti+1, xj ) + W(ti, xj )
)
.

By the linear interpolation with respect to the space variable, i.e., for i = 0, 1, . . .,

un,τ (ti , x) := un,τ (ti , κn(x)) + n(x − κn(x))

[
un,τ

(
ti , κn(x) + 1

n

)
− un,τ (ti , κn(x))

]
,

the mild form of un,τ is given by:

un,τ (t, x) =
1∫

0

G
n,τ
1 (t, x, y)u0(κn(y)) dy

+ λ

t∫
0

1∫
0

G
n,τ
2 (t − κτ (s) − τ, x, y)σ

(
un,τ (κτ (s), κn(y))

)
dW(s, y), (17)

almost surely for every t = iτ, x ∈ [0, 1], where the fully discrete Green functions

G
n,τ
1 (t, x, y) :=

n−1∑(
R1,lR2,l

)[ t
τ

]
en
l (x)ēl(κn(y)),
l=0
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G
n,τ
2 (t, x, y) :=

n−1∑
l=0

(
R1,lR2,l

)[ t
τ

]
R1,le

n
l (x)ēl(κn(y))

with R1,l := (1 − θτλn
l )

−1, R2,l := 1 + (1 − θ)τλn
l , and κτ (s) :=

[
s
τ

]
τ . For the derivation of 

(17), we refer to Appendix B.
Moreover, Gn,τ

i , i = 1, 2 can be rewritten as

G
n,τ
1 (t, x, y) =

⎧⎨
⎩
∑[

n
2

]
l=−[ n

2

] (R1,lR2,l

)[ t
τ

]
en
l (x)ēl(κn(y)), n is odd,∑ n

2
l=− n

2 +1

(
R1,lR2,l

)[ t
τ

]
en
l (x)ēl(κn(y)), n is even,

G
n,τ
2 (t, x, y) =

⎧⎨
⎩
∑[

n
2

]
l=−[ n

2

] (R1,lR2,l

)[ t
τ

]
R1,le

n
l (x)ēl(κn(y)), n is odd,∑ n

2
l=− n

2 +1

(
R1,lR2,l

)[ t
τ

]
R1,le

n
l (x)ēl(κn(y)), n is even.

By expanding the real and imaginary parts, it is not difficult to observe that Gn,τ
i , i = 1, 2 are 

real functions (see Appendix B).
Below, we give definitions of the pth moment Lyapunov exponent (see [10,25]) and the weak 

intermittency for the solution of a full discretization.

Definition 4.1. (i) For the solution un,τ of a full discretiaztion, its pth moment Lyapunov expo-
nent at x ∈ [0, 1] is defined by

γ̄ n,τ
p (x) := lim sup

m→∞
1

mτ
logE

(∣∣un,τ (mτ, x)
∣∣p) , (18)

for p ∈ (0, ∞).
(ii) The solution un,τ is called weakly intermittent if for all x ∈ [0, 1], γ̄ n,τ

2 (x) > 0 and γ̄ n,τ
p (x) <

∞ for p > 2.

Before we investigate the weak intermittency of (1) under the full discretization, we first 
present some conditions on step sizes to ensure the well-posedness of the fully discrete Green 
functions. That is to say, the step sizes are chosen to such that |R1,jR2,j | < 1, j = 1, 2, . . . , 

[
n
2

]
. 

Note that R1,jR2,j < 1, so what we need is to find conditions such that

R1,jR2,j = 1 + (1 − θ)τλn
j

1 − θτλn
j

≥ −1 + ε, j = 1,2, . . . ,
[n

2

]

for some fixed ε > 0. It is equivalent to find conditions such that

−4(1 − 2θ + εθ)n2τ sin2 jπ

n
≥ −2 + ε. (19)

Hence, we divide θ into the following three cases.
284



C. Chen, T. Dang and J. Hong Journal of Differential Equations 333 (2022) 268–301
Case 1: θ ∈ [0, 12 ). For such θ , we have 1 − 2θ + εθ > 0, hence, (19) is equivalent to

n2τ sin2 jπ

n
≤ 2 − ε

4(1 − 2θ + εθ)
. (20)

Suppose n2τ ≤ r ≤ 2−ε
4(1−2θ+εθ)

, then ε ≤ 2 − 4r
1+4θr

, and (20) holds for j = 1, 2, . . . , 
[

n
2

]
. More-

over, 2 − 4r
1+4θr

> 0 implies r < 1
2−4θ

.

Case 2: θ = 1
2 . Suppose n2τ ≤ 2−ε

4(1−2θ+εθ)
= 1

ε
− 1

2 , then (19) holds with θ = 1
2 .

Case 3: θ ∈ ( 1
2 , 1]. For such θ , we can choose ε > 0 small enough, e.g. ε := min{− 1−2θ

2θ
, 12 }, 

such that (19) holds for all n ≥ 3, 0 < τ < 1, j = 1, 2, . . . , 
[

n
2

]
.

To sum up, we make the following assumption on the spatial step size 1
n

and the temporal 
step size τ when θ takes different values, which is the standard stability condition for the full 
discretization.

Assumption 4.1. (i) For 0 ≤ θ < 1
2 , suppose n2τ ≤ r < 1

2−4θ
with some constant r > 0.

(ii) For θ = 1
2 , suppose n2τ ≤ 1

ε
− 1

2 with some ε ∈ (0, 12 ).
(iii) For 1

2 < θ ≤ 1, there is no coupled requirement for n, τ .

Below, we give the main result of this subsection.

Theorem 4.1. Let Assumptions 2.1 and 4.1 hold, and assume that real numbers p ≥ 2 and λ > 0
satisfy pλ2 ≥ 1

C0L
2
σ

with some C0 > 0. Then (1) under the full discretization is weakly intermit-
tent.

The proof of Theorem 4.1 follows from the intermittent upper bound (Sections 4.2) and the 
intermittent lower bound (Section 4.3). Before that, we prove some properties of the fully discrete 
Green functions, which play a key role in the estimates of the intermittent upper and lower 

bounds. In the following, we define R3,j := (R1,jR2,j )
−1 − 1 = − λn

j τ

1+(1−θ)τλn
j

.

Lemma 4.1. For n ≥ 3, 0 < τ < 1, Gn,τ
i (t, x, y), i = 1, 2 have the following properties:

(i) 
∫ 1

0 G
n,τ
1 (t, x, y) dy = 1 for t > 0, x ∈ [0, 1].

(ii) For t > 0, x ∈ [0, 1], the following equalities hold:

1∫
0

(
G

n,τ
2 (t, x, y)

)2
dy =

n−1∑
j=0

(R1,jR2,j )
2
[

t
τ

]
R2

1,j

∣∣en
j (x)

∣∣2

=

⎧⎪⎨
⎪⎩
∑[

n
2

]
j=−[ n

2

](R1,jR2,j )
2
[

t
τ

]
R2

1,j

∣∣en
j (x)

∣∣2, n is odd,

∑ n
2
j=− n

2 +1(R1,jR2,j )
2
[

t
τ

]
R2

1,j

∣∣en
j (x)

∣∣2, n is even.

Moreover, we have 
∫ 1 (

G
n,τ

(t, x, y)
)2

dy ≥ 1.
0 2
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(iii) Under Assumption 4.1, 
∫ 1

0

(
G

n,τ
2 (t, x, y)

)2
dy ≤ 1 + C√[

t
τ

]
τ+τ

with some constant C :=
C(θ) > 0 for all t > 0, x ∈ [0, 1].
(iv) Under Assumption 4.1, for each fixed n ≥ 3 and 0 < τ < 1, there exists a number t (n, τ) > 0
depending on n, τ , such that Gn,τ

1 (t, x, y) ≥ 1
2 > 0 for all t > t (n, τ), x, y ∈ [0, 1].

Proof. The proofs of (i) (ii) are similar to those in Lemma 3.1, so we only prove (iii) (iv).
(iii) We split the set 

{
j : 1,2, . . . ,

[
n
2

]}
into two parts, i.e.,

{
j : 1,2, . . . ,

[n
2

]}
=
{
j : R1,jR2,j ≥ 1

2

}
∪
{
j : −1 + ε ≤ R1,jR2,j <

1

2

}
=: A1 ∪ A2.

In the sequel, we always use the fact that for j ∈ A1, 1
2 < R2,j < 1 and −λn

j τ ≤
R3,j ≤ −2λn

j τ , and for j ∈ A2, 
∣∣R1,jR2,j

∣∣ ≤ 1 − ε. Moreover, we observe that A1 ⊂{
j : 1 ≤ j ≤ 1

4

√
1

(2−θ)τ

}
and A2 ⊂

{
j : 1

2π

√
1

(2−θ)τ
< j ≤ [n2 ]}.

Hence,

1∫
0

(
G

n,τ
2 (t, x, y)

)2
dy ≤ 1 + 4

[
n
2

]∑
j=1

(
R1,jR2,j

)2[ t
τ

]
R2

1,j

= 1 + 4
∑
j∈A1

(
R1,jR2,j

)2[ t
τ

]
R2

1,j + 4
∑
j∈A2

(
R1,jR2,j

)2[ t
τ

]
R2

1,j

≤ 1 + 16
∑
j∈A1

(
1 + R3,j

)−2
[

t
τ

]−2 + 4
∑
j∈A2

(1 − ε)2
[

t
τ

]
R2

1,j =: 1 + J1 + J2.

We split J1 further as follows,

J1 =16
∑
j∈A1

(
1 + R3,j

)−2
[

t
τ

]−2 = 16
∑
j∈A1

((
1 + R3,j

)−2
[

t
τ

]−2 − exp

{
−2R3,j

([
t

τ

]
+ 1

)})

+ 16
∑
j∈A1

exp

{
−2R3,j

([
t

τ

]
+ 1

)}
=: J1,1 + J1,2.

For the term J1,2,

J1,2 ≤ 16
∑
j∈A1

e−32j2τ
([

t
τ

]+1
)
≤ 16

∑
1≤j≤ 1

4

√
1

(2−θ)τ

e−32j2τ
([

t
τ

]+1
)

≤ 16

∞∫
0

e−32z2τ
([

t
τ

]+1
)
dz ≤ C

([
t

τ

]
τ + τ

)− 1
2

.

As for J11,
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J1,1 ≤ 16
∑
j∈A1

exp

{
−2

([
t

τ

]
+ 1

)
ln
(
1 + R3,j

)}

×
(

1 − exp

{
2

([
t

τ

]
+ 1

)(−R3,j + ln
(
1 + R3,j

))})

≤ 16
∑
j∈A1

exp

{
−2

([
t

τ

]
+ 1

)
ln
(

1 − λn
j τ
)}

×
(

1 − exp

{
2

([
t

τ

]
+ 1

)(
2λn

j τ + ln
(

1 − 2λn
j τ
))})

≤ 16
∑

1≤j≤ 1
4

√
1

(2−θ)τ

exp

{
−2

([
t

τ

]
+ 1

)
ln
(

1 − λn
j τ
)}

×
(

1 − exp

{
2

([
t

τ

]
+ 1

)(
2λn

j τ + ln
(

1 − 2λn
j τ
))})

≤ 16
∑

1≤j≤ 1
4

√
1

(2−θ)τ

exp

{
2

([
t

τ

]
+ 1

)
C2λ

n
j τ

}
×
(

2

([
t

τ

]
+ 1

)
C1

(
2λn

j τ
)2
)

≤
∑

1≤j≤ 1
4

√
1

(2−θ)τ

C

∣∣∣∣
([

t

τ

]
+ 1

)
j2τ

∣∣∣∣
− 3

2
([

t

τ

]
+ 1

)
j4τ 2

≤
∑

1≤j≤ 1
4

√
1

(2−θ)τ

Cj

([
t

τ

]
+ 1

)− 1
2

τ
1
2 ≤ C(θ)

([
t

τ

]
τ + τ

)− 1
2

,

where we have used the fact that λn
j τ ∈ [−4π2j2τ,−16j2τ

]
for j = 1, 2, . . . , 

[
n
2

]
and j2τ <

1
16(2−θ)

, so z := −λn
j τ ∈

(
0, π2

4(2−θ)

]
, and for such z, we have −C1z

2 ≤ −z + ln(1 + z) ≤ 0 and 

ln(1 +z) ≥ C2z for some C1, C2 > 0. The inequalities −z+ ln(1 +z) ≤ 0 with z ≥ 0, 1 −e−z ≤ z

with z ≥ 0 and e−z2 ≤ C(α)z−α with α > 0, z > 0 are also used (here we choose α = 3).
For the term J2,

J2 ≤
∑

1
2π

√
1

(2−θ)τ
<j≤[ n

2

]4(1 − ε)2
[

t
τ

]
(1 − θτλn

j )
−2 ≤

∑
1

2π

√
1

(2−θ)τ
<j≤[ n

2

]4(1 − ε)2
[

t
τ

]
(1 + 16θj2τ)−2

≤ 4

[
n
2

]∫
1
√

1

(1 − ε)2
[

t
τ

]
(1 + 16θx2τ)−2 dx (let y = x

√
τ)
2π (2−θ)τ
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≤ 4√
τ

[
n
2

]√
τ∫

1
2π

√
1

2−θ

(1 − ε)2
[

t
τ

]
(1 + 16θy2)−2 dy

≤ 4√
τ

× e−2
([

t
τ

]+1
)

ln(1−ε)−1 × (1 − ε)−2

[
n
2

]√
τ∫

1
2π

√
1

2−θ

(1 + 16θy2)−2 dy

≤ C(θ)

([
t

τ

]
τ + τ

)− 1
2

[
n
2

]√
τ∫

1
2π

√
1

2−θ

(1 + 16θy2)−2 dy,

where in the last line we use the inequality e−z2 ≤ C(α)z−α , for α > 0, z > 0 (α is chosen to be 

1). Therefore, it remains to prove 
∫ [ n

2

]√
τ

1
2π

√
1

2−θ

(1 + 16θy2)−2 dy ≤ C for some C > 0.

For Case 1 and Case 2, because n2τ is bounded, so 
∫ [ n

2

]√
τ

1
2π

√
1

2−θ

(1 + 16θy2)−2 dy ≤ C.

For Case 3, we have 
∫ [ n

2

]√
τ

1
2π

√
1

2−θ

(1 + 16θy2)−2 dy ≤ ∫∞
0 (1 + 16θy2)−2 dy ≤ C.

Combining these three cases, we finish the proof of (iii).
(iv) We only prove the case of n being odd since the proof is similar when n is even. For each 

fixed n ≥ 3, 0 < τ < 1, R1,jR2,j is a decreasing sequence of j . Hence, under Assumption 4.1, for 
all j = 1, 2, . . . , 

[
n
2

]
, we have −1 + ε ≤ R1,jR2,j ≤ R1,1R2,1 < 1. Therefore, for each n, τ , we 

can choose ε′ := min
{
ε,1 − R1,1R2,1

}
> 0, such that 

∣∣R1,jR2,j

∣∣≤ 1 − ε′ for j = 1, 2, . . . , 
[

n
2

]
. 

Then

2
∣∣∣
[

n
2

]∑
j=1

(
R1,jR2,j

)[ t
τ

]
ej (κn(x))ēj (κn(y))

∣∣∣≤ 2

[
n
2

]∑
j=1

∣∣R1,jR2,j

∣∣[ t
τ

]
≤ 2

[
n
2

]∑
j=1

(1 − ε′)
[

t
τ

]
→ 0

as t → ∞ for all x, y ∈ [0, 1]. So there exists a t := t (n, τ) > 0 large enough, such that when 

t > t (n, τ), we get − 1
2 ≤ 2 

∑[
n
2

]
j=1

(
R1,jR2,j

)[ t
τ

]
ej (κn(x))ēj (κn(y)) ≤ 1

2 , which implies

G
n,τ
1 (t, κn(x), y) = 1 + 2

[
n
2

]∑
j=1

(
R1,jR2,j

)[ t
τ

]
ej (κn(x))ēj (κn(y)) ≥ 1

2

for all x, y ∈ [0, 1] and t > t (n, τ). This will lead to our desired result after linear interpolation 
with respect to the space variable. �
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4.2. Intermittent upper bound

Proposition 4.1. Under Assumption 4.1, for real numbers p ≥ 2 and λ > 0 that satisfy pλ2 ≥
1

C0L
2
σ

with some C0 > 0, there exists a random field un,τ ∈⋃β>0 Lβ,p solving (17) for each 

n ≥ 3, 0 < τ < 1. Moreover, un,τ is a.s.-unique among all random fields satisfying

sup
x∈[0,1]

E
(∣∣un,τ (t, x)

∣∣p)≤ C
p
1 exp

{
C2L

4
σ λ4p3t

}
, for t = mτ, m ≥ 0

with C1 := C1
(

supx∈[0,1] u0(x), n
)
> 0 and C2 > 0.

Proof. We apply Picard’s iteration again by defining

u
n,τ
(0)

(t, x) := u0(x),

u
n,τ
(q+1)(t, x) :=

1∫
0

G
n,τ
1 (t, x, y)u0(κn(y)) dy

+ λ

t∫
0

1∫
0

G
n,τ
2 (t − κτ (s) − τ, x, y)σ

(
u

n,τ
(q) (κτ (s), κn(y))

)
dW(s, y).

Using Lemma 4.1 (ii) (iii), combining the linear growth of σ , Minkowski inequality and 
Burkholder–Davis–Gundy inequality, we obtain

∥∥un,τ
(q+1)(mτ, x)

∥∥2
p

≤ 2 sup
x∈[0,1]

|u0(x)|2 ×
(

1 + 4

[
n
2

]∑
j=1

(
R1,jR2,j

)2m
)

+ CL2
σ pλ2

mτ∫
0

( 1√
mτ − κτ (s)

+ 1
)(

1 + sup
y∈[0,1]

∥∥un,τ
(q) (κτ (s), y)

∥∥2
p

)
ds

≤ 2 sup
x∈[0,1]

|u0(x)|2 ×
(

1 + 4

[
n
2

]∑
j=1

(
R1,jR2,j

)2m
)

+ CL2
σ pλ2

mτ∫
0

( 1√
mτ − s

+ 1
)
ds

+ CL2
σ pλ2

mτ∫
0

( 1√
mτ − κτ (s)

+ 1
)

sup
y∈[0,1]

∥∥un,τ
(q) (κτ (s), y)

∥∥2
p

ds.

Under Assumption 4.1, we have 
∣∣R1,jR2,j

∣∣ < 1. So 1 + 4 
∑[

n
2

]
j=1

(
R1,jR2,j

)2m ≤ 1 + 2n ≤ 3n. 
Therefore,
289



C. Chen, T. Dang and J. Hong Journal of Differential Equations 333 (2022) 268–301
∥∥un,τ
(q+1)(mτ, x)

∥∥2
p

≤ 6n sup
x∈[0,1]

|u0(x)|2 + CL2
σ pλ2(

√
mτ + mτ)

+ CL2
σ pλ2

mτ∫
0

( 1√
mτ − κτ (s)

+ 1
)

sup
y∈[0,1]

∥∥un,τ
(q) (κτ (s), y)

∥∥2
p

ds. (21)

Multiplying e−2βmτ with 2β ≥ 1 on both sides of (21) and taking supremum over m ≥ 0, we 
obtain

sup
m≥0

sup
x∈[0,1]

{
e−2βmτ

∥∥un,τ
(q+1)(mτ, x)

∥∥2
p

}

≤ 6n sup
x∈[0,1]

|u0(x)|2 + CL2
σ pλ2

( 1√
4βe

+ 1

2βe

)
+ CL2

σ pλ2

× sup
m≥0

m−1∑
j=0

e−2β(mτ−jτ)

(j+1)τ∫
jτ

( 1√
mτ − jτ

+ 1
)

ds sup
j≥0

sup
y∈[0,1]

{
e−2βjτ

∥∥un,τ
(q) (jτ, y)

∥∥2
p

}

≤ 6n sup
x∈[0,1]

|u0(x)|2 + CL2
σ pλ2

( 1√
4βe

+ 1

2βe

)

+ CL2
σ pλ2

∞∫
0

e−2βr
( 1√

r
+ 1
)
dr sup

j≥0
sup

y∈[0,1]

{
e−2βjτ

∥∥un,τ
(q) (jτ, y)

∥∥2
p

}

≤ 6n sup
x∈[0,1]

|u0(x)|2 + CL2
σ pλ2

( 1√
4βe

+ 1

2βe

)

+ CL2
σ pλ2

(√ π

2β
+ 1

2β

)
sup
j≥0

sup
y∈[0,1]

{
e−2βjτ

∥∥un,τ
(q)

(jτ, y)
∥∥2

p

}

≤ 6n sup
x∈[0,1]

|u0(x)|2 + 3CL2
σ pλ2

√
2β

+ 3CL2
σ pλ2

√
2β

sup
j≥0

sup
y∈[0,1]

{
e−2βjτ

∥∥un,τ
(q) (jτ, y)

∥∥2
p

}
,

where in the last step we have used 
√

π
2β

+ 1
2β

≤ 3√
2β

for 2β ≥ 1.

The remaining part of the proof is similar to that of Proposition 3.1 by choosing β = 18(C +
C0
6 )2L4

σ p2λ4 such that it satisfies 3CL2
σ pλ2√
2β

≤ 1
2 and β ≥ 1

2 . Hence, we can get

E
(∣∣un,τ

(q+1)(mτ, x)
∣∣p)≤ C

p
2

1 exp {pβmτ } , p ≥ 2,

where C1 = (12n + 1) supx∈[0,1] |u0(x)|2 + 1. Moreover, by the similar technique as in Proposi-
tion 3.1, one can prove the convergence of {un,τ

(q) }q≥0 and the uniqueness of the solution of (17). 
We omit the details. The proof is completed. �

Based on Proposition 4.1, we give the following result, which shows the upper bound for the 
pth moment Lyapunov exponent.
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Proposition 4.2. Under Assumption 4.1, for real numbers p ≥ 2 and λ > 0 that satisfy pλ2 ≥
1

C0L
2
σ

with some C0 > 0, there exists a positive constant C such that for each fixed 0 < τ <

1, n ≥ 3, we have supx∈[0,1] γ̄
n,τ
p (x) ≤ CL4

σ λ4p3.

4.3. Intermittent lower bound

It remains to investigate the lower bound of γ̄ n,τ
2 . Before that, we give the following reverse 

discrete Grönwall type inequality.

Lemma 4.2. (Reverse Discrete Grönwall type inequality) Let {yn}n≥0 be non-negative sequence 
and satisfy

yn ≥ α +
∑

0≤k≤n−1

βyk (22)

for n ≥ N , where α, β > 0. Then for l = 0, 1, 2, . . .,

yN+l ≥
(
α + β

∑
0≤k≤N−1

yk

)
(1 + β)l. (23)

Proof. We prove (23) by induction. When l = 0, (22) with n = N implies yN ≥ α +∑
0≤k≤N−1 βyk , which is (23) with l = 0.
Suppose that (23) holds for all l ≤ q . Now we prove it in the case of l = q + 1. By (22) with 

n = N + q + 1 and the case of l ≤ q , we get

yN+q+1 ≥ α +
∑

0≤k≤N−1

βyk +
∑

N≤j≤N+q

βyj = α +
∑

0≤k≤N−1

βyk +
∑

0≤j≤q

βyN+j

= α +
∑

0≤k≤N−1

βyk +
∑

0≤j≤q

β
(
α(1 + β)j + β(1 + β)j

∑
0≤k≤N−1

yk

)

= α
(

1 +
∑

0≤j≤q

β(1 + β)j
)

+ β
(

1 +
∑

0≤j≤q

β(1 + β)j
) ∑

0≤k≤N−1

yk.

It suffices to prove

1 +
∑

0≤j≤q

β(1 + β)j = (1 + β)q+1, q ≥ 1. (24)

To this end, we show it by induction again.
Obviously, (24) holds for q = 1. Suppose that it holds for q = r − 1, we check it for q = r ,

(1 + β)r+1 =
(

1 +
∑

0≤j≤r−1

β(1 + β)j
)
(1 + β)

= 1 +
∑

β(1 + β)j + β
(

1 +
∑

β(1 + β)j
)

0≤j≤r−1 0≤j≤r−1
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= 1 +
∑

0≤j≤r−1

β(1 + β)j + β(1 + β)r = 1 +
∑

0≤j≤r

β(1 + β)j .

Hence we finish the proof. �
Proposition 4.3. Under Assumptions 2.1 and 4.1, for each fixed n ≥ 3 and 0 < τ < 1,

inf
x∈[0,1] γ̄

n,τ
2 (x) ≥ log(1 + λ2J 2

0 τ)

τ
> 0.

Proof. For each fixed n ≥ 3, 0 < τ < 1, Lemma 4.1 (iv) implies that there is a t (n, τ) > 0, such 
that Gn,τ

1 (t, x, y) > 0 for t > t (n, τ). Hence, taking the second moment on both sides of (17), 
and combining Walsh isometry (see e.g. [22, Chapter 4]) and Lemma 4.1 (i) (ii), we get when 
mτ > t(n, τ),

E
(∣∣un,τ (mτ, x)

∣∣2)

≥ I 2
0 + λ2J 2

0

mτ∫
0

1∫
0

G
n,τ
2 (mτ − κτ (s) − τ, x, y)2E

(∣∣un,τ (κτ (s), κn(y))
∣∣2) ds dy

≥ I 2
0 + λ2J 2

0

mτ∫
0

1∫
0

G
n,τ
2 (mτ − κτ (s) − τ, x, y)2 dy inf

y∈[0,1]E
(∣∣un,τ (κτ (s), y)

∣∣2) ds

≥ I 2
0 + λ2J 2

0

mτ∫
0

inf
y∈[0,1]E

(∣∣un,τ (κτ (s), y)
∣∣2) ds.

Taking infimum over x ∈ [0, 1] yields

inf
x∈[0,1]E

(∣∣un,τ (mτ, x)
∣∣2)≥ I 2

0 + λ2J 2
0

mτ∫
0

inf
y∈[0,1]E

(∣∣un,τ (κτ (s), y)
∣∣2) ds,

which is equivalent to

inf
x∈[0,1]E

(∣∣un,τ (mτ, x)
∣∣2)≥ I 2

0 + λ2J 2
0

m−1∑
j=0

inf
y∈[0,1]E

(∣∣un,τ (jτ, y)
∣∣2) τ.

Applying Lemma 4.2 with α = I 2
0 , β = λ2J 2

0 τ, N =
[

t (n,τ )
τ

]
+ 1 and omitting the last term on 

the right hand side of (23), we obtain infx∈[0,1] E 
(
|un,τ (Nτ + lτ, x)|2

)
≥ I 2

0 (1 + λ2J 2
0 τ)l . This 

leads to

inf
x∈[0,1] γ̄

n,τ
2 (x) = inf

x∈[0,1] lim sup
l→∞

logE
(
|un,τ (Nτ + lτ, x)|2

)
Nτ + lτ

≥ log(1 + λ2J 2
0 τ)

τ
> 0.
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The proof is finished. �
Remark 4.1. (i) By Proposition 4.3, we have

inf
x∈[0,1] lim inf

τ→0
γ̄

n,τ
2 (x) ≥ lim

τ→0

log(1 + λ2J 2
0 τ)

λ2J 2
0 τ

λ2J 2
0 = λ2J 2

0 ,

where this lower bound is equal to that of the spatial semi-discretization (see Proposition 3.3).
(ii) As for the exponential integrator (see [16]), whose continuous version can be written into the 
following mild form:

u
n,τ
E (t, x) :=

1∫
0

Gn(t, x, y)u0(κn(y)) dy

+ λ

t∫
0

1∫
0

Gn(t − κτ (s), x, y)σ
(
u

n,τ
E (κτ (s), κn(y))

)
W(dsdy),

for t = iτ, x ∈ [0, 1], where Gn(t, x, y) =∑n−1
j=0 e

λn
j t

en
j (x)ēj (κn(y)), we can get the weak inter-

mittency of (1) under this full discretization similarly.

4.4. Index of Lyapunov exponents

In this subsection, by applying a discrete version of renewal approach, the index of Lyapunov 
exponents of (1) under the full discretization is proved to be 4. Thus, we show that the index of 
Lyapunov exponents of the exact solution is preserved by the full discretization.

Theorem 4.2. Let Assumptions 2.1 and 3.1 hold. For n, τ satisfying n2τ <
16πζ 2

J 4
0 +162π2ζ 2 , we have

inf
x∈[0,1]E

(∣∣un,τ (mτ, κn(x))
∣∣2)≥ C1e

C2J
4
0 λ4mτ , mτ > T, (25)

where T := T (n, τ) > 0, C1 = 16πζI 2
0

J 2
0 +32πζ

, and C2 = 4π2ζ 2

(J 2
0 +32πζ)2 . Namely, the index of Lyapunov 

exponents of the full discretization is 4.

The proof of Theorem 4.2 depends on the refined estimate (see Lemma 4.3) of the fully 
discrete Green function and a discrete probability density function (see g̃ in Lemma 4.4) for 
the discrete version of renewal approach. We remark that the restriction on n, τ in Theorem 4.2
comes from Lemma 4.4 to ensure that g̃ could be a discrete probability density function.

Lemma 4.3. Let 8(1 − θ)n2τ < 1. Then we have

1∫ (
G

n,τ
2 (t, κn(x), y)

)2
dy ≥ 1 − exp

{−4n2π2
([

t
τ

]+ 1
)
τ
}

8
√

π
([

t
]+ 1

)
τ

.

0 τ
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Proof. Under conditions in Lemma 4.3, we have 1
2 < R2,j ≤ 1, R3,j < −2λn

j τ , hence,

1∫
0

(
G

n,τ
2 (t, κn(x), y)

)2
dy ≥

[
n
2

]∑
j=0

(
1 + R3,j

)−2
[

t
τ

]−2
(R2,j )

−2

≥
[

n
2

]∑
j=0

exp

{
−2

([
t

τ

]
+ 1

)
ln
(
1 + R3,j

)}≥
[

n
2

]∑
j=0

exp

{
−2

([
t

τ

]
+ 1

)
R3,j

}

≥
[

n
2

]∑
j=0

exp

{
4τλn

j

([
t

τ

]
+ 1

)}
≥
[

n
2

]∑
j=0

exp

{
−16j2π2

([
t

τ

]
+ 1

)
τ

}

≥1 − exp
{−4n2π2

([
t
τ

]+ 1
)
τ
}

8
√

π
([

t
τ

]+ 1
)
τ

,

where in the last line we use the same technique as in Lemma 3.3. The proof is finished. �
Lemma 4.4. Let g̃(r) := b̃e−πμ2b̃2rτ 1−e−4n2π2rτ√

rτ
τ , where b̃ := λ2J 2

0
8
√

π
. Suppose that n, τ satisfy 

n2τ <
16πζ 2

J 4
0 +162π2ζ 2 and n ≥ ζλ2 for some ζ > 0, then {g̃(r)}r≥1 is a discrete probability density 

function with some suitable μ ≥ 16πζ

J 2
0 +32πζ

> 0.

Proof. It suffices to find some constant μ > 0 to be the zero point of the function

h̃(μ) := 1

b̃

( ∞∑
r=1

g̃(r) − 1
)

=
∞∑

r=1

e−πμ2b̃2rτ

√
rτ

τ −
∞∑

r=1

e−(πμ2b̃2+4n2π2)rτ

√
rτ

τ − 1

b̃
. (26)

On one hand,

∞∑
r=1

e−πμ2b̃2rτ

√
rτ

τ ≤
∞∫

0

e−πμ2b̃2zτ

√
z

√
τ dz = 1

μb̃
. (27)

On the other hand,

∞∑
r=1

e−πμ2b̃2rτ

√
rτ

τ ≥
∞∫

1

e−πμ2b̃2zτ

√
z

√
τ dz

=
∞∫

0

e−πμ2b̃2zτ

√
z

√
τ dz −

1∫
0

e−πμ2b̃2zτ

√
z

√
τ dz ≥ 1

μb̃
− 2

√
τ . (28)

Similarly, we have
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√
1

μ2b̃2 + 4n2π
− 2

√
τ ≤

∞∑
r=1

e−(πμ2b̃2+4n2π2)rτ

√
rτ

τ ≤
√

1

μ2b̃2 + 4n2π
. (29)

Combining (27) (28) and (29), we obtain

1

μb̃
− 2

√
τ −

√
1

μ2b̃2 + 4n2π
− 1

b̃
≤ h̃(μ) ≤ 1

μb̃
−
(√

1

μ2b̃2 + 4n2π
− 2

√
τ

)
− 1

b̃
.

Hence, for any ε > 0, the right hand side of (26) converges uniformly to a continuous function 
on μ ∈ [ε, 1], which is still denoted by h̃(μ).

Because of n ≥ ζλ2, by choosing ε = 1√
b̃2

4πζ2λ4 +2
= 16πζ

J 2
0 +32πζ

≤ 1√
b̃2

4n2π
+2

that is independent 

of b̃, we have 
( 1

ε
− 1
) ≥

√
b̃2

4n2π
+ 1 >

√
b̃2

4n2π
+ 2b̃

√
τ >

√
b̃2

ε2b̃2+4n2π
+ 2b̃

√
τ , which yields 

h̃(ε) > 0.

Due to the fact that 
J 4

0 n2τ

16πζ 2 + 16πn2τ < 1 implies 1 > 4b̃2τ + 16πn2τ , we get h̃(1) ≤
− 
(√

1
b̃2+4n2π

− 2
√

τ
)

< 0. Therefore, there is a μ := μ(n, τ, b̃) ∈ (ε, 1) satisfying h̃(μ) = 0, 

and μ ≥ ε = 16πζ

J 2
0 +32πζ

. The proof is finished. �
Proof of Theorem 4.2. Taking the second moment on both sides of (17) with space variable 
being κn(x) and time variable being mτ , and combining Walsh isometry, Lemma 4.1 (i) (ii) and 
Lemma 4.3, we get

E
(∣∣un,τ (mτ, κn(x))

∣∣2)≥ I 2
0 + λ2J 2

0

8
√

π

m−1∑
j=0

1 − e−4n2π2(m−j)τ

√
(m − j)τ

inf
y∈[0,1]E

(∣∣un,τ (jτ, κn(y))
∣∣2) τ.

Taking infimum over x ∈ [0, 1], then multiplying both sides by e−πμ2b̃2mτ with b̃ = λ2J 2
0

8
√

π
, we see 

that Mn,τ (mτ) := e−πμ2b̃2mτ infx∈[0,1] E 
(
|un,τ (mτ, κn(x))|2

)
satisfies

Mn,τ (mτ) ≥e−πμ2b̃2mτ I 2
0 +

m−1∑
j=0

b̃e−πμ2b̃2(m−j)τ 1 − e−4n2π2(m−j)τ

√
(m − j)τ

Mn,τ (jτ )τ

=e−πμ2b̃2mτ I 2
0 +

m∑
j=1

b̃e−πμ2b̃2jτ 1 − e−4n2π2jτ

√
jτ

Mn,τ ((m − j)τ )τ.

By Lemma 4.4, g̃(r) = b̃e−πμ2b̃2rτ 1−e−4n2π2rτ√
rτ

τ is a discrete probability density function. Hence, 
applying the renewal theorem (see [24, Theorem 8.5.13]) and the discrete version of [22, Theo-
rem 7.11] leads to

lim inf
m→∞ Mn,τ (mτ) ≥ I 2

0

∑∞
r=0 e−πμ2b̃2rτ∑∞
r=1 rg̃(r)

≥ I 2
0

∫∞
0 e−πμ2b̃2zτ dz∫∞

b̃e−πμ2b̃2zτ
√

zτ dz + 1/(μ
√

2eπ)
:= d > 0,
0
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where 1
μ

√
2eπ

is the maximum of b̃e−πμ2b̃2zτ√zτ for z ≥ 0. Therefore, there is a T := T (n, τ) >

0, such that infx∈[0,1] E 
(
|un,τ (mτ, κn(x))|2

)
≥ d

2 eπμ2b̃2mτ , ∀ mτ > T . It follows from μ2b̃2τ ≤
1 that 1

μ
√

2eπ
≤
√

π
2e

∫∞
0 b̃e−πμ2b̃2zτ√zτ dz =

√
π
2e

× 1
2πμ3b̃2τ

, so we have d ≥ 2μI 2
0

1+
√

π
2e

. More-

over, Lemma 4.4 implies μ2b̃2 ≥ ε2b̃2 = 4πζ 2J 4
0 λ4

(J 2
0 +32πζ)2 , which completes the proof of (25). This, 

combining with Remark 2.2 and Proposition 4.1 implies that the index of Lyapunov exponents 
of the full discretization is 4. Hence, the proof of the theorem is completed. �
5. Conclusions and future aspects

In this paper, in order to investigate discretizations that could reflect the weak intermittency 
and preserve the index of Lyapunov exponents of the exact solution of (1), we implement an 
approach based on the compact integral form of the discretization and the detailed analysis of 
the discrete Green function. It is shown that (1) under the spatial semi-discretization and further 
the full discretization are both weakly intermittent. Furthermore, both of them could preserve the 
index of Lyapunov exponents of the exact solution under certain conditions. In fact, there are still 
many problems that remain to be solved. We list several potential aspects for future work:

(1) Is there a criterion that is easy to check, to judge whether a discretization can reflect the weak 
intermittency of the original equation?

(2) How to characterize the degree of the preservation of the weak intermittency of the original 
equation for discretizations, if they all can reflect this weak intermittency?

The above two problems are challenging. Generally, the expression of the discrete Green 
function for a discretization can not be written explicitly, so it is difficult to analyze the detailed 
point-wise and integral estimates of the discrete Green function. Moreover, we have not found 
a suitable way to characterize the degree of the preservation of the weak intermittency of the 
original equation for discretizations. We leave these problems as open problems, and attempt to 
study them in our future work.

Appendix A. Proof of (7)

Using notations

[Un(t)]k = Un
k (t) := un

(
t,

k

n

)
, [Wn(t)]k = Wn

k (t) := √
n

(
W
(
t,

k + 1

n

)
− W

(
t,

k

n

))
,

it follows from (6) that

[dUn(t) − n2DUn(t)dt]k = λ
√

n[diag(σ (Un
0 (t)), . . . , σ (Un

n−1(t))) dWn(t)]k,

where D = (Dki) is an n × n matrix
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⎛
⎜⎜⎜⎜⎝

−2 1 1

1 −2
. . .

. . .
. . . 1

1 1 −2

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues of n2D are λn
j := −4n2 sin2

(
jπ
n

)
, j = 0, 1, . . . , n − 1, and the corresponding 

complex eigenvectors are denoted by fj , whose kth component is 
[
fj

]
k

:= 1√
n
e2π ij k

n , j, k =
0, 1, . . . , n − 1. Denote ej (x) := e2π ijx . Moreover, fj , j = 0, 1, . . . , n − 1 form an orthogonal 
normal basis in Cn (see [23]).

Simple computation yields

[
Un(t)

]
k
=
[
en2DtUn(0)

]
k
+ λ

√
n

⎡
⎣ t∫

0

en2D(t−s)diag(σ (Un
0 (s)), . . . , σ (Un

n−1(s))) dWn(s)

⎤
⎦

k

.

(A.1)

Note that

[
en2DtUn(0)

]
k
=
⎡
⎣n−1∑

j=0

aj e
λn

j t
fj

⎤
⎦

k

=
n−1∑
j=0

aj

1√
n
e
λn

j t
ej

(
k

n

)

=
n−1∑
j=0

n−1∑
l=0

u0

(
l

n

)
1

n
e
λn

j t
ēj

(
l

n

)
ej

(
k

n

)
=

1∫
0

Gn
(
t,

k

n
, y
)
u0(κn(y)) dy, (A.2)

where

Gn
(
t,

k

n
, y
)

=
n−1∑
j=0

e
λn

j t
ej

(
k

n

)
ēj (κn(y)), un(0) =

n−1∑
j=0

ajfj , aj =
n−1∑
l=0

u0

(
l

n

)
1√
n

ēj

(
l

n

)
.

Similarly,

λ
√

n

⎡
⎣ t∫

0

en2D(t−s)diag(σ (Un
0 (s)), . . . , σ (Un

n−1(s))) dWn(s)

⎤
⎦

k

=λ

t∫
0

n−1∑
l=0

n−1∑
j=0

1√
n

e
λn

j (t−s)
σ
(
Un

l (s)
)
ēj

(
l

n

)
ej

(
k

n

)
dWn

l (s)

=λ

t∫
0

1∫
0

Gn
(
t − s,

k

n
, y
)
σ(un(s, κn(y))) dW(s, y). (A.3)
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Combining (A.1) (A.2) and (A.3), we get

un
(
t,

k

n

)
=

1∫
0

Gn
(
t,

k

n
, y
)
u0(κn(y)) dy + λ

t∫
0

1∫
0

Gn
(
t − s,

k

n
, y
)
σ(un(s, κn(y))) dW(s, y).

(A.4)

We construct the continuous version of (A.4) by the linear interpolation:

un(t, x) := un(t, κn(x)) + (nx − nκn(x))

[
un
(
t, κn(x) + 1

n

)
− un(t, κn(x))

]
, x ∈ [0,1].

Denote en
j (x) := ej (κn(x)) + (nx − nκn(x)) 

[
ej

(
κn(x) + 1

n

)
− ej (κn(x))

]
, x ∈ [0, 1], then 

Gn(t, x, y) =∑n−1
j=0 e

λn
j t

en
j (x)ēj (κn(y)), t ≥ 0, x, y ∈ [0, 1]. Obviously un satisfies the equation

un(t, x) =
1∫

0

Gn(t, x, y)un(0, (κn(y)) dy + λ

t∫
0

1∫
0

Gn(t − s, x, y)σ
(
un(s, κn(y))

)
dW(s, y),

almost surely for all t ≥ 0 and x ∈ [0, 1]. Hence we get (7).
Gn(t, x, y) can be rewritten as follows by expanding its real and imaginary parts.

If n is odd,

Gn(t, x, y) = 1 + 2

[
n
2

]∑
j=1

e
λn

j t
(
ϕn

c,j (x)ϕc,j (κn(y)) + ϕn
s,j (x)ϕs,j (κn(y))

)
.

If n is even,

Gn(t, x, y) =1 + 2

n
2 −1∑
j=1

e
λn

j t
(
ϕn

c,j (x)ϕc,j (κn(y)) + ϕn
s,j (x)ϕs,j (κn(y))

)

+ e
λn

n
2
t(

ϕn
c, n

2
(x)ϕc, n

2
(κn(y)) + ϕn

s, n
2
(x)ϕs, n

2
(κn(y))

+ iϕn
s, n

2
(x)ϕc, n

2
(κn(y)) − iϕn

c, n
2
(x)ϕs, n

2
(κn(y))

)

=1 + 2

n
2 −1∑
j=1

e
λn

j t
(
ϕn

c,j (x)ϕc,j (κn(y)) + ϕn
s,j (x)ϕs,j (κn(y))

)

+ e−4n2t ϕn
c, n

2
(x)ϕc, n

2
(κn(y)),

where ϕc,j (x) := cos(2πjx), ϕs,j (x) := sin(2πjx), and
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ϕn
c,j (x) := ϕc,j (κn(x)) + (nx − nκn(x))

[
ϕc,j

(
κn(x) + 1

n

)
− ϕc,j (κn(x))

]
,

ϕn
s,j (x) := ϕs,j (κn(x)) + (nx − nκn(x))

[
ϕs,j

(
κn(x) + 1

n

)
− ϕs,j (κn(x))

]
.

Appendix B. Proof of (17)

It is clear that (16) is equivalent to

un,τ (ti+1, xj ) = (1 − θτ�n)
−1 (1 + (1 − θ)τ�n)un,τ (ti , ·)(xj )

+ (1 − θτ�n)
−1λτσ(un,τ (ti , ·))�n,τW(ti, ·)(xj ).

It is easy to check that �nej (xk) = λn
j ej (xk), k, j = 0, 1, . . . , n − 1. Let R1 := (1 −

θτ�n)
−1, R2 := (1 + (1 − θ)τ�n), R1,l := (1 − θτλn

l )
−1, R2,l := (1 + (1 − θ)τλn

l

)
.

By iteration, we get

un,τ (ti , ·)(xj )

= (R1R2)
i un,τ (t0, ·)(xj ) + λ

i−1∑
k=0

(R1R2)
kR1τσ

(
un,τ (ti−1−k, ·)

)
�n,τW(ti−1−k, ·)(xj )

=
n−1∑
l=0

n−1∑
k=0

1

n

(
R1,lR2,l

)i
u0

(
k

n

)
ēl

(
k

n

)
el

(
j

n

)

+ λ

i−1∑
k=0

n−1∑
l=0

n−1∑
q=0

1√
n

(
R1,lR2,l

)i−1−k
R1,lσ

(
un,τ

(
tk,

q

n

))(
Wn

q (tk+1) − Wn
q (tk)

)
ēl

(q

n

)
el

(
j

n

)

=:
1∫

0

G
n,τ
1 (ti , xj , y)u0(κn(y)) dy

+ λ

ti∫
0

1∫
0

G
n,τ
2 (ti − κτ (s) − τ, xj , y)σ (un,τ (κτ (s), κn(y))) dW(s, y),

where κτ (s) :=
[

s
τ

]
τ and

G
n,τ
1 (t, xj , y) :=

n−1∑
l=0

(
R1,lR2,l

)[ t
τ

]
el(xj )ēl(κn(y)),

G
n,τ
2 (t, xj , y) :=

n−1∑
l=0

(
R1,lR2,l

)[ t
τ

]
R1,lel(xj )ēl(κn(y)).

By the linear interpolation with respect to the space variable, and denoting
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G
n,τ
1 (t, x, y) :=

n−1∑
l=0

(
R1,lR2,l

)[ t
τ

]
en
l (x)ēl(κn(y)),

G
n,τ
2 (t, x, y) :=

n−1∑
l=0

(
R1,lR2,l

)[ t
τ

]
R1,le

n
l (x)ēl(κn(y)),

it is clear that un,τ satisfies the integral equation

un,τ (t, x) =
1∫

0

G
n,τ
1 (t, x, y)u0(κn(y)) dy

+ λ

t∫
0

1∫
0

G
n,τ
2 (t − κτ (s) − τ, x, y)σ

(
un,τ (κτ (s), κn(y))

)
dW(s, y),

almost surely for every t = iτ, x ∈ [0, 1]. Hence we get (17).
By expanding the real and imaginary parts, the fully discrete Green functions can be written 

as follows,

G
n,τ
1 (t, x, y) = 1 + 2

∑̃
l

(
R1,lR2,l

)[ t
τ

] (
ϕn

c,l(x)ϕc,l(κn(y)) + ϕn
s,l(x)ϕs,l(κn(y))

)
+
(
R1, n

2
R2, n

2

)[ t
τ

]
gn(x, y),

G
n,τ
2 (t, x, y) = 1 + 2

∑̃
l

(
R1,lR2,l

)[ t
τ

]
R1,l

(
ϕn

c,l(x)ϕc,l(κn(y)) + ϕn
s,l(x)ϕs,l(κn(y))

)
+
(
R1, n

2
R2, n

2

)[ t
τ

]
R1, n

2
gn(x, y),

where

gn(x, y) :=
{

0, n = 2k + 1,

ϕn
c, n

2
(x)ϕc, n

2
(κn(y)), n = 2k + 2, k = 1,2, . . . .
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